Issue |
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
|
|
---|---|---|
Article Number | 07007 | |
Number of page(s) | 8 | |
Section | Critical infrastructure and cascading impacts | |
DOI | https://doi.org/10.1051/e3sconf/20160707007 | |
Published online | 20 October 2016 |
Impact of extreme weather on critical infrastructure: the EU-INTACT risk framework
1 HR Wallingford Ltd., Howbery Park, Wallingford, Oxfordshire, UK
2 VTT Technical Research Centre of Finland Ltd., P.O. Box 1300, FI-33101 Tampere, Finland
a Corresponding author: a.tagg@hrwallingford.com
Resilience of critical infrastructure (CI) to extreme weather events, such as heavy rainfall, high temperatures and winter storms, is one of the most demanding challenges for governments and society. Recent experiences have highlighted the economic and societal reliance on a dependable and resilient infrastructure, and the far-reaching impacts that outages or malfunctions can have. Growing scientific evidence indicates that more severe and frequent extreme weather events are likely. The EU-funded INTACT project addresses these CI challenges and attempts to bring together cutting-edge knowledge and experience from across Europe to inform the development of best practice approaches in planning, crisis response and recovery capabilities. The project considers the options for mitigating the extreme weather impacts. A key component of the INTACT project is the development of a risk management structure to support decision-making in the case studies. This structure forms part of the overall INTACT Wiki: the main output of the project. It comprises a risk ‘framework’ that sets out how information and guidance can be accessed by CI owners and operators. Within this there is a step-wise risk assessment process based on best practice from the IEC. The risk framework and process presents: structures for models and data requirements for decision making; identifies tools and methods that support decision making; supports analysis of measures to protect CI through simulation; and indicates gaps in modelling and data availability. This paper outlines the components of the risk framework and process, and illustrates its use in a case study dealing with electricity supply and winter storms.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.