Issue |
E3S Web Conf.
Volume 8, 2016
Mineral Engineering Conference MEC2016
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 1 | |
DOI | https://doi.org/10.1051/e3sconf/20160801007 | |
Published online | 16 September 2016 |
Effect of process variables on synthesis of MgB2 by a high energy ball mill
1 Eskişehir Osmangazi University, Department of Mining Engineering, 26480, Eskişehir, Turkey
2 Eskişehir Osmangazi University, Department of Metallurgical Engineering, 26480, Eskişehir, Turkey
a Corresponding author: hkurama@ogu.edu.tr
The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA) starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene) on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure of MgB2 and to determine the optimum synthesis condition. It was found that the ball-to-powder mass ratio of precursors mixed and the milling time remarkably affect the MgB2 phase wt % and product size.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.