Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 09003 | |
Number of page(s) | 4 | |
Section | Advances in Experimental Methods: Mechanical Properties | |
DOI | https://doi.org/10.1051/e3sconf/20160909003 | |
Published online | 12 September 2016 |
Effect of particle size on the measurement of the apparent contact angle in sand of varying wettability under air-dried conditions
The University of Hong Kong (HKU) Pokfulam, Hong Kong, Hong Kong SAR, China
a Corresponding author: yunesh@connect.hku.hk
Changes in the wettability of soil are known to affect several processes such as infiltration and the shear strength of soil. In this study, the wettability of a medium to fine sand was chemically modified by using different concentrations of dimethyldichlorosilane (DMDCS). The sessile drop method (SDM) was used for the assessment of wettability of hydrophobised Leighton Buzzard Sand (LBS). The results demonstrate that beyond a concentration of 2 g per kg of LBS, the finer fraction had its apparent contact angle (ACA) increased up to 115° while the maximum ACA attained by the coarser fractions was 100°. At such high concentration of DMDCS, the effect of trapped air, which is known to increase the ACA, was found to be either small or insignificant. The standard deviations of the ACAs agreed well with past studies. The most important factors contributing to the water-repellent behaviour of chemically synthesised sand were attributed to the characteristics of the particles; these include surface area and particle shape.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.