Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 14018 | |
Number of page(s) | 6 | |
Section | Mechanical Behaviour | |
DOI | https://doi.org/10.1051/e3sconf/20160914018 | |
Published online | 12 September 2016 |
Characterizing the variation of small strain shear modulus for silt and sand during hydraulic hysteresis
1 Assistant Professor, School of Civil Engineering, Sharif University of Technology, Tehran, Iran
2 Graduate Student, School of Civil Engineering, Sharif University of Technology, Tehran, Iran
3 Professor, School of Civil Engineering, Sharif University of Technology, Tehran, Iran
a Corresponding author: khosravi@sharif.edu
Experimental studies have indicated that the small strain shear modulus, Gmax, of unsaturated silt and clay has a greater amount during imbibition than during drainage, when presented as a function of matric suction. However, due to material properties and inter-particle forces, different behavior is expected in the case of sand. Although considerable research has been devoted in recent years to characterize the behaviour of Gmax of sand during drainage, rather less attention has been paid to the effect of hydraulic hysteresis on Gmax and its variations during imbibition. In the study presented herein, an effort has been made to compare the Gmax behavior of specimens of silt and sand during hydraulic hysteresis. In this regard, a series of bender element tests were carried out in a modified triaxial test device with suction-saturation control to evaluate the impact of hydraulic hysteresis on Gmax for specimens of silt and sand. Trends between the Gmax and matric suction for unsaturated sand were found to be different from those for silty specimens. The variations in Gmax showed an up and down trend in both drainage and imbibition paths for sandy specimens, where plotted as a function of matric suction. Results also indicated smaller magnitudes of Gmax upon imbibition than those during drainage; a behavior which is believed to be attributed to variations in suction stress with matric suction. In silty specimens, a stiffer response was measured during imbibition which was hypothesized to be due to drainage-induced hardening experienced by the specimens that was not fully recovered during imbibition.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.