Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 15001 | |
Number of page(s) | 6 | |
Section | Slopes Stability | |
DOI | https://doi.org/10.1051/e3sconf/20160915001 | |
Published online | 12 September 2016 |
Rainfall-induced landslides in Quaternary soils in Norway
1 PhD student, University of Oslo, Norway
2 Norwegian Geotechnical Institute (NGI), Oslo, Norway
a Corresponding author: hhe@ngi.no
Increased intensity of rainfall in later years seems to result in increased frequency of rainfall-induced landslides in natural slopes with glacial Quaternary deposits, which cover large parts of Norway. Many slides hit railway and road infrastructure, and sometimes dwellings. Typically, the soil matrix has a high content of intermediate soils (sand and silt). Natural soil slopes may have inclinations above the effective friction angle of the soils. Slope stability hence must rely on some cohesion, which often is “apparent”, i.e. caused by negative pore-water pressure (suction). Dissipation of suction during short- or long-term rainfall hence results in reduced shear strength of the slope, and may lead to slope failure. There is a scarcity of data for Norwegian soils for thorough analysis of landslide triggering based on unsaturated geomechanics. More data may result in improved landslide warning. In this paper, results from unsaturated shear box testing of samples of a silty sand taken from a landslide site in Eastern Norway are presented and discussed.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.