Issue |
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
|
|
---|---|---|
Article Number | 20002 | |
Number of page(s) | 6 | |
Section | Transportation Infrastructures | |
DOI | https://doi.org/10.1051/e3sconf/20160920002 | |
Published online | 12 September 2016 |
Modeling of unsaturated granular materials in flexible pavements
1 Texas A&M Transportation Institute, Texas A&M University, 77843 College Station, Texas, USA
2 School of Engineering and Applied Science, Aston University, B4 7ET, Birmingham, UK
a Corresponding author: tracygufan@tamu.edu
The unsaturated granular material (UGM) is found to exhibit the moisture-sensitive and stress-dependent nonlinear cross-anisotropic behaviour in flexible pavements. This paper aims at developing a finite element (FE) model for pavement structure, which takes into account this behaviour of UGM. First, the Lytton model is employed to characterize the moisture-sensitive and stress-dependent behaviour of UGM, which incorporated a matric suction term to the existing stress-dependent constitutive model. The Lytton model is validated by the laboratory resilient modulus tests on the selected UGMs at different moisture contents. Second, the nonlinear cross-anisotropic constitutive equation of UGM is derived from the generalized Hooke’s Law. The coefficients of the constitutive model are determined by the rapid triaxial test. Third, a User-Defined Material (UMAT) subroutine is developed to characterize this constitutive behaviour in the FE software ABAQUS. The UMAT subroutine adopts the secant stiffness approach with multiple damping factors. The UMAT subroutine is then implemented in the FE model of flexible pavement structures. The FE simulation results indicate the nonlinear cross-anisotropic model predicts greater pavement responses than the isotropic model. When the UGM is suction sensitive, it is found that the moisture content of UGM significantly affects the moduli distribution of base layer and the critical strains (i.e., tensile strain at the bottom of asphalt concrete, and compressive strains in base and subgrade layers) of pavement structures.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.