Issue |
E3S Web Conf.
Volume 16, 2017
11th European Space Power Conference
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 6 | |
Section | Energy Storage: Battery Modelling and Ground / Flight Testing | |
DOI | https://doi.org/10.1051/e3sconf/20171607004 | |
Published online | 23 May 2017 |
A Novel In-Flight Space Battery Health Assessment System
ESA-ESTEC, Keplerlaan 1, 2200 AG Noordwijk, NL
Email: brandon.buergler@esa.int
Email: francois.bausier@esa.int
The assessment of an in-flight battery health status is of great interest. However, it is very difficult to perform with sufficient accuracy because the battery is constantly operated and no full discharge during a space mission can be done. Currently, a method for performing a health assessment is via the correlation of battery capacity with internal resistance, which can be more easily measured. Another method is to fit the on board battery voltage using the telemetry of current and temperature as inputs by advanced modelling techniques and to derive the ageing parameters of the battery. This is done by optimising the parameters so that the fitted voltage curve is as close as possible to the actual measured voltage telemetry curve. Then an assessment of the battery capacity and energy can be done by simulating a battery discharge at the desired conditions with the required voltage limits. However, these two methods often require extensive battery life tests on ground to estimate the ageing behaviour for a particular mission.
In this paper a novel health assessment system is proposed by which a more straight forward and accurate assessment of the battery health in terms of capacity and energy can be performed. The proposed system consists to use one or some battery string(s), which can be safely disconnected via the PCDU (Power Conditioning and Distribution Unit) from the battery for a dedicated capacity measurement while the main part of the battery continues to operate normally. In this paper, the viability of the proposed system is demonstrated and the implications on the battery and the power system are discussed.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.