Issue |
E3S Web Conf.
Volume 18, 2017
Mineral Engineering Conference MEC2017
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/20171801004 | |
Published online | 04 October 2017 |
Research on the Possibility of Sorting Application for Separation of Shale and/or Gangue from the Feed of Rudna Concentrator
KGHM Cuprum Ltd. Research and Development Center, 53-659 WrocŁaw, Poland
* e-mail: agrotowski@cuprum.wroc
Shale, which occurs in the copper ore deposits belonging to KGHM Polska Miedź S.A., is the reason for a number of difficulties, at the stage of not only processing but also smelting. Gangue, in turn, getting in a feed during mining is a useless load of a concentrator and also contributes to lowering concentrating indexes. Its content in a feed is being evaluated at 15-30%. The multiple attempts to solve those issues by the methods of conventional mineral processing or even selective mining failed. In the range of work, research on the lithological composition and Cu content in 300 individual particles (selected from Rudna feed) have been carried out. Using those results, the simulation of gangue separation with an application of sorting have been done. The positive results have been received: introduction of a sorting operation causes, theoretically, removing of approximately 20-30% sorting feed mass as final tailings with Cu losses not bigger than 5-10%. It means that the capacity of Rudna concentrator can be increased proportionally. To confirm those results, industrial sorting trials are necessary, when appropriate sorters will become available. Additionally, one should take also into account that the finest classes of feed (-12.5 mm) could not be concentrated in a sorter. In the range of work, the preliminary tests of the industrial sorter (PRO Secondary Color NIR) for separation of the shale concentrate from Rudna concentrator feed have been carried out. The shale concentrates were received both from 12.5-20 mm class and +20 mm class. The concentrates produced from the coarse classes, for both technological sides had shale content at the level of 48-49%, with recovery of 52.9-60%. In the case of the finer class, shale content in the concentrates for both technological sides amounts to 30.9-35%, at the slightly lower recoveries than for coarse classes. Cu and Corg behavior in the sorting process were checked also, however, the results turned out to be not very interesting. Because the results of shale concentrate production by sorting have a significant potential for improvement, the further researches in this direction have been recommended, however, making them start off from elaboration of a technology for shale concentrate processing and calculation of a total balance of a concentrating process involving flotation and separation.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.