Issue |
E3S Web Conf.
Volume 19, 2017
International Conference Energy, Environment and Material Systems (EEMS 2017)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 5 | |
Section | Materials | |
DOI | https://doi.org/10.1051/e3sconf/20171903005 | |
Published online | 23 October 2017 |
Features of single tracks in coaxial laser cladding of a NIbased self-fluxing alloy
1 Faculty of Mechanical Engineering, University of Zielona Góra, Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
2 Faculty of Mechanical Engineering, Belarusian National Technical University, Khmelnitsky str., 9, build. 6, Minsk 220013, Belarus
⁎ Corresponding author: E.Feldsztein@ibem.uz.zgora.pl
In the present paper, the influence of coaxial laser cladding conditions on the dimensions, microstructure, phases and microhardness of Ni-based self-fluxing alloy single tracks is studied. The height and width of single tracks depend on the speed and distance of the laser cladding: increasing the nozzle distance from the deposited surface 1.4 times reduces the width of the track 1.2 - 1.3 times and increases its height 1.2 times. The increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height in 1.5 - 1.6 times. At the same time, the increase of the laser spot speed 3 times reduces the track width 1.2 - 1.4 times and the height 1.5 - 1.6 times. Regularities in the formation of single tracks microstructure with different cladding conditions are defined, as well as regularity of distribution of elements over the track depth and in the transient zone. The patterns of microhardness distribution over the track depth for different cladding conditions are found.
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.