Issue |
E3S Web Conf.
Volume 31, 2018
The 2nd International Conference on Energy, Environmental and Information System (ICENIS 2017)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 5 | |
Section | 05. Waste Management | |
DOI | https://doi.org/10.1051/e3sconf/20183105001 | |
Published online | 21 February 2018 |
The Acoustical Properties of the Polyurethane Concrete Made of Oyster Shell Waste Comparing Other Concretes as Architectural Design Components
1
Department of Architecture, Faculty of Engineering, Diponegoro University, Semarang - Indonesia
2
Department of Civil Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia
* Corresponding author: ernisyahdu@gmail.com; ernisetyowati@arsitektur.undip.ac.id
This research aims to determine the acoustical properties of concrete material made of polyurethane and oyster shell waste as both fine aggregate and coarse aggregate comparing to other concrete mortar. Architecture needs aesthetics materials, so the innovation in architectural material should be driven through the efforts of research on materials for building designs. The DOE methods was used by mixing cement, oyster shell, sands, and polyurethane by composition of 160 ml:40 ml:100 ml: 120 ml respectively. Refer to the results of previous research, then cement consumption is reduced up to 20% to keep the concept of green material. This study compared three different compositions of mortars, namely portland cement concrete with gravel (PCG), polyurethane concrete of oyster shell (PCO) and concrete with plastics aggregate (PCP). The methods of acoustical tests were conducted refer to the ASTM E413-04 standard. The research results showed that polyurethane concrete with oyster shell waste aggregate has absorption coefficient 0.52 and STL 63 dB and has a more beautiful appearance when it was pressed into moulding. It can be concluded that polyurethane concrete with oyster shell aggregate (PCO) is well implemented in architectural acoustics-components.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.