Issue |
E3S Web Conf.
Volume 31, 2018
The 2nd International Conference on Energy, Environmental and Information System (ICENIS 2017)
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 5 | |
Section | 05. Waste Management | |
DOI | https://doi.org/10.1051/e3sconf/20183105006 | |
Published online | 21 February 2018 |
Preliminary Evaluation of Method to Monitor Landfills Resilience against Methane Emission
1
Master Program of Environmental Studies, School of Postgraduate Studies Diponegoro University, Semarang - Indonesia
2
Departemen of Urban and Regional Planning, Faculty Engineering, Diponegoro University, Semarang - Indonesia
* Corresponding author: chusna.amalia95@gmail.com
Methane emission from landfill sites contribute to global warming and un-proper methane treatment can pose an explosion hazard. Stakeholder and government in the cities in Indonesia been found significant difficulties to monitor the resilience of landfill from methane emission. Moreover, the management of methane gas has always been a challenging issue for long waste management service and operations. Landfills are a significant contributor to anthropogenic methane emissions. This study conducted preliminary evaluation of method to manage methane gas emission by assessing LandGem and IPCC method. From the preliminary evaluation, this study found that the IPCC method is based on the availability of current and historical country specific data regarding the waste disposed of in landfills while from the LandGEM method is an automated tool for estimating emission rates for total landfill gas this method account total gas of methane, carbon dioxide and other. The method can be used either with specific data to estimate emissions in the site or default parameters if no site-specific data are available. Both of method could be utilize to monitor the methane emission from landfill site in cities of Central Java.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.