Issue |
E3S Web Conf.
Volume 38, 2018
2018 4th International Conference on Energy Materials and Environment Engineering (ICEMEE 2018)
|
|
---|---|---|
Article Number | 02020 | |
Number of page(s) | 4 | |
Section | Material Science and Technology | |
DOI | https://doi.org/10.1051/e3sconf/20183802020 | |
Published online | 04 June 2018 |
Rigid-flexible Coupling Analysis of Backhoe Hydraulic Excavator Working Device
School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
* Corresponding author: yuan-yong-liang@163.com
This paper develops a rigid-flexible coupling approach to predict the dynamic performance of the excavator, including the stress distribution and stress diagram of curves. In order to study the dynamic performance of the excavator during the mining process, the rigid-flexible coupling model of a excavator is established and carried out for dynamics simulation. The results show that the strength of excavator meets the expected requirement and there is a large optimization space. In order to reduce the mass of the excavator's boom, this paper optimizes the design of the boom. Based on the results of the optimization design, the rigid-flexible coupling simulation of the excavator was performed again, which verified that the strength of the boom is sufficient. Simulation results show that the virtual prototype software can effectively predict the dynamic performance of the excavator. This paper provides a solid foundation for further study of the lightweight design of the whole excavator component.
© The Authors, published by EDP Sciences, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.