Issue |
E3S Web Conf.
Volume 38, 2018
2018 4th International Conference on Energy Materials and Environment Engineering (ICEMEE 2018)
|
|
---|---|---|
Article Number | 03048 | |
Number of page(s) | 5 | |
Section | Water Conservancy and Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/20183803048 | |
Published online | 04 June 2018 |
Numerical Simulation Study of Booming Effect in Fast Currents of Inland River
1
China Waterborne Transport Research Institute, Beijing, 100088, P.R. China
2
Nanjing Hydraulic Research Institute, Nanjing, 210029, P.R. China
* Corresponding author: chenrongchang@wti.ac.cn
In the downstream tidal section of the Yangtze River, nine kinds of combinations of hydrological environmental conditions are considered, including the annual average runoff flow, the annual average peak flow and the flood control design flow, as well as the three conditions of spring, medium and neap tides. By means of the numerical simulation method, the effective performance parameter values for conventional intercepting boom under different environmental conditions are obtained by simulating 9 kinds of maximum current speed to withstand, Max.CS, respectively. The results show that, in the downstream fast current tidal section of the Yangtze River, for the boom performance index of Max.CS, the relatively extensive applicability value should be 3.0kn under the condition of the annual average runoff flow; 4.0Kn should be selected under the condition of the annual average peak flow; and 4.5Kn should be selected under the flood control design flow. This study can provide technical support for the design, selection and use of booms in downstream waters of the Yangtze River.
© The Authors, published by EDP Sciences, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.