Issue |
E3S Web Conf.
Volume 38, 2018
2018 4th International Conference on Energy Materials and Environment Engineering (ICEMEE 2018)
|
|
---|---|---|
Article Number | 03049 | |
Number of page(s) | 5 | |
Section | Water Conservancy and Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/20183803049 | |
Published online | 04 June 2018 |
Effect of deflector curvature on hydrodynamic performances of a double-slotted cambered otter-board
1
Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
2
China National Fisheries Corporation, Beijing 100032, China
* Corresponding author: zhangxun007@hotmail.com
The effect of deflector curvature on hydrodynamic performances of a double-slotted cambered otter-board was investigated using engineering models in a wind tunnel. Four different curvature (0.06,0.09, 0.12 and 0.15) were evaluated at a wind speed of 28 m/s. Parameters measured included: drag coefficient Cx, lift coefficient Cy, pitch moment coefficient Cm, center of pressure coefficient Cp , over a range of angle of attack (0° to 70°). These coefficients were used in analyzing the differences in the performance among the four otter-board models. Results showed that the maximum lift coefficient Cy of the otter-board model with the curvature (0.06) of two deflectors was highest (2.020 at °=55°). The maximum Cy/Cx of the otter-board with the curvature (0.12) of two deflectors was highest (3.655 at °=22.5°). A comparative analysis of Cm and Cp showed that the stability of otter-board model with the curvature (0.12) of two deflectors is better in pitch, and the stability of otter-board model with the curvature (0.06) of two deflectors is better in roll. The findings of this study can offer useful reference data for the structural optimization of otter-boards for trawling.
© The Authors, published by EDP Sciences, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.