Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 8 | |
Section | River morphodynamics and restoration | |
DOI | https://doi.org/10.1051/e3sconf/20184002002 | |
Published online | 05 September 2018 |
Numerical groyne layout optimisation for restoration projects in large rivers: An adaptive approach towards a desired morphodynamic equilibrium
1
Institute of Water Management, Hydrology and Hydraulic Engineering, Department of Water, Atmosphere and Environment, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 107, 1190 Vienna, Austria
2
Christian Doppler Laboratory for Sediment Research and Management,
Institute of Water Management, Hydrology and Hydraulic Engineering, Department
oWater, Atmosphere and Environment, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 107, 1190 Vienna, Austria
* Corresponding author: martin.glas@boku.ac.at
Integrative restoration measures at large rivers target the improvement of morphological and ecological conditions, under consideration of economic demands, specifically navigational ones. Alternative groyne layouts with e.g. reduced groyne spacing and lowered crest elevation reduce ecological deficits and have the potential to cease frequently encountered river bed incision of heavily modified rivers. On the other hand, the induced change in the morphodynamic equilibrium may interfere with navigation by reducing the water depth in the fairway. In 2009, a pilot project was realised on the Austrian Danube, including an alternative groyne layout. As a consequence the desired aggradations in the fairway became too large, leading to an increased dredging effort. In 2014, a numerical groyne optimisation, specifically a 3D numerical model in combination with a sediment transport model, was applied. In 2015, after implementing the optimised groyne layout in the field, morphodynamic equilibrium was reached reducing the need of extensive dredging. This equilibrium could be shown by analysing subsequently observed bathymetries until 2017. Moreover, the morphodynamic changes due to the groyne optimisation in 2015 were reproduced successfully with the numerical models. Thus they represent a cost effective tool for planning and optimising future restoration measures in large and heavily modified rivers.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.