Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 03030 | |
Number of page(s) | 8 | |
Section | Hydraulic structures and their effects on bed, flow regime and ecology | |
DOI | https://doi.org/10.1051/e3sconf/20184003030 | |
Published online | 05 September 2018 |
Experimental investigation of reservoir sediments
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
* Corresponding author: felix.beckers@iws.uni-stuttgart.de
This study presents an experimental approach to investigate cohesive reservoir sediments. It is shown, how adjacent sediment cores can be extracted from reservoir beds with a Frahm Sediment Sampler. The cores are subsequently used for detailed investigations in a hydraulic laboratory. In a first step, related cores are identified based on their bulk density profiles. One part of the related cores is used to analyze the sediment properties over depth by means of potential stability parameters. The other part is used to determine the depth-dependent erosion stability in an erosion flume (SETEG-system). In the SETEG-system, a photogrammetric method is applied to measure the erosion rates of pre-defined sediment layers at different exposed shear stresses. Subsequently, the critical shear stress can be derived, which leads to an objective evaluation and allows a systematic approach. Finally, both results are combined to investigate possible correlations between the evaluated depth-dependent stability parameters and the measured erosion stability. The approach is presented on sediment cores from the case study “Kleiner Brombachsee”, a reservoir that is located in Middle Franconia, Germany.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.