Open Access
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
Article Number 03030
Number of page(s) 8
Section Hydraulic structures and their effects on bed, flow regime and ecology
Published online 05 September 2018
  1. G.L. Morris, J. Fan, Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use (McGraw-Hill, New York, 1998) [Google Scholar]
  2. Deutsches TalsperrenKomitee e. V. (Ed.), Talsperren in Deutschland (Springer Fachmedien Wiesbaden, Wiesbaden, 2013) [Google Scholar]
  3. Reikowski, A., Manual FRAHM-LOT, (MBT Underwater Technology, V 1.1) [Google Scholar]
  4. S.U. Gerbersdorf, S. Wieprecht, Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture, Geobiology 13, 68-97 (2015) [CrossRef] [PubMed] [Google Scholar]
  5. DIN EN 13137:2001-12, Characterization of waste -Determination of total organic carbon (TOC) in waste, sludges and sediments (2001) [Google Scholar]
  6. DIN ISO 13536:1997-04, Soil quality -Determination of the potential cation exchange capacity and exchangeable cations using barium chloride solution buffered at pH = 8,1 (ISO 13536:1995) (1997) [Google Scholar]
  7. K. Raunkjaer, T. Hvitvedjacobsen, P.H. Nielsen, Measurement of pools of protein, carbohydrate and lipid in domestic waste-water, Water research 28, 251-262 (1994) [CrossRef] [Google Scholar]
  8. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Analytical chemistry 28, 350-356 (1956) [CrossRef] [Google Scholar]
  9. DIN 38412-16:1985-12, German standard methods for the examination of water, waste water and sludge; test methods using water organisms (group L); determination of chlorophyll-a in surface water (L 16) (1985) [Google Scholar]
  10. O. Witt, B. Westrich, Quantification of erosion rates for undisturbed contaminated cohesive sediment cores by image analysis, The Interactions between Sediments and Water. Springer, pp. 271-276 (2003) [CrossRef] [Google Scholar]
  11. M. Noack, S.U. Gerbersdorf, G. Hillebrand, S. Wieprecht, Combining Field and Laboratory Measurements to Determine the Erosion Risk of Cohesive Sediments Best, Water 7, 5061-5077 (2015) [CrossRef] [Google Scholar]
  12. A. Schaefer Rodrigues Silva, G. Schmid, M. Noack, S. Wieprecht, Erosionsmessungen an Sedimentkernen aus dem Oberwasser der Wehranlage Marckolsheim und Rhinau (No. 03/2017), Institut für Wasser-und Umweltsystemmodellierung (2017) [Google Scholar]
  13. T.M. Ravens, P.M. Gschwend, Flume measurements of sediment erodibility in Boston Harbor, Journal of Hydraulic Engineering 125, 998-1005 (1999) [CrossRef] [Google Scholar]
  14. L.P. Sanford, J.P. Halka, Assessing the paradigm of mutually exclusive erosion and deposition of mud, with examples from upper Chesapeake Bay, Marine Geology 37-57 (1993) [CrossRef] [Google Scholar]
  15. T.J. Tolhurst, R. Riethmüller, D.M. Paterson, In situ versus laboratory analysis of sediment stability from intertidal mudflats, Continental Shelf Research (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.