Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 7 | |
Section | Fluid mechanics and sediment processes | |
DOI | https://doi.org/10.1051/e3sconf/20184005001 | |
Published online | 05 September 2018 |
Reducing Darcy coefficient by using drag reduction methods in open-channel flows: Effect on discharge capacity and potential application to mitigate river flooding impact
1
Univ Lyon, INSA Lyon, CNRS, LMFA UMR5509, F-69621 Villeurbanne, France
2
SNF SAS, Rue Adrienne Bolland, ZAC de Milieux, 42163 Andrézieux Cédex, France
* Corresponding author: emmanuel.mignot@insa-lyon.fr
Drag reduction by polymer addition is a common strategy used to minimize friction losses in pipe flows but has not been tested in river flows. Present paper then aims at measuring backwater curves and velocity profiles within smooth and rough bed flume configurations to assess the capabilities of such polymer addition to decrease the water depth with regards to the use of plain water and thus increase the channel conveyance. The inclusion of a limited amount of polymers proves to be able to reduce the typical Darcy-Weisbach friction coefficient with regards to plain water by a factor 2 in smooth bed conditions and a factor 1.5 in rough bed conditions. Moreover, the vertical profiles of streamwise velocity appear to be hardly affected by the addition of such polymers. Whether such drag reduction would still be effective in real watercourses remains unknown and would now require field experiments at larger scale.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.