Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 8 | |
Section | Extreme events | |
DOI | https://doi.org/10.1051/e3sconf/20184006003 | |
Published online | 05 September 2018 |
Estimating the long-term evolution of river bed levels using hydrometric data
1
Irstea, UR RiverLy, 5 rue de la Doua CS 20244, 69625 Villeurbanne, France
2
National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand
3
Stockholm University, Physical Geography, Stockholm, Sweden
The stage-discharge measurements and rating curves accumulated over decades at hydrometric stations are a valuable source of information on the long-term evolution of river bed levels. However, the methodology to extract meaningful geomorphic information from such hydrometric data is not straightforward. We introduce an original method to estimate the parameters of successive rating curves by Bayesian analysis in sequence. These parameters reflect the physical properties of the channel features that control the stage-discharge relation: low-flow riffles, main channel, floodway (bars), floodplain, etc. The dates of rating changes are assumed to be known in existing hydrometric records. The uncertainty interval of each parameter is estimated, assuming, however, that no rating change has been ignored by the station manager. It is thus possible to clearly distinguish overall trends of the channel bed level from the local evolution of riffles and to evaluate whether the observed temporal changes are significant compared to the estimation uncertainties.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.