Issue |
E3S Web Conf.
Volume 44, 2018
10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2018
|
|
---|---|---|
Article Number | 00013 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20184400013 | |
Published online | 03 July 2018 |
Characteristics of temporal variability of urban ecosystem-atmosphere CO2, CH4, and N2O fluxes
1
Unit of Engineering and Protection of Atmosphere, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
2
Dept. of Soil Science of Temperate Ecosystems, Georg August University of Goettingen, Goettingen, Germany
* Corresponding author: jaroslaw.bezyk@pwr.edu.pl
Understanding the origin and mechanisms controlling GHGs (CO2, CH4 and N2O) emission spatially and temporally is critical for evaluating future climate changes. Whether the controls on GHG dynamics in urban ecosystem are similar to those in natural ecosystems are not fully understood. In the current study, the aboveground (cover vegetation + soil) and soil (including autotrophic and heterotrophic) CO2, N2O and CH4 fluxes and respective carbon stable isotopic composition (δ13C) of respired CO2 at natural abundance level were simultaneously measured from a re-established grassland in the urban area of central Germany. The static chamber system (combination of transparent and opaque modes) was applied to assess the effects of intensive vegetation growth during two weeks of April 2017. The values of CO2 fluxes obtained with both transparent and opaque chambers differed significantly due to the combined effects of the incoming photosynthetically active radiation (PAR) and temperature on vegetation and belowground processes. The average value of measured CO2 flux with opaque chambers was 9.14 ± 1.9 (mg m-2 min-1) vs. 2.37 ± 0.9 (mg m-2 min-1) with transparent chambers for the re-established grassland. In contrast, soil CH4, as well as N2O fluxes were not different significantly for both opaque-transparent chamber measurements. Current magnitude provides the pattern of the urban ecosystem source/ sinks potential during ambient light conditions.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.