Issue |
E3S Web Conf.
Volume 44, 2018
10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2018
|
|
---|---|---|
Article Number | 00178 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20184400178 | |
Published online | 03 July 2018 |
Air trapping problem during infiltration on the large areas
Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geotechnics, Geology and Marine Civil Engineering, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
* Corresponding author : wittisle@pg.gda.pl
The process of flow modeling in unsaturated porous medium is often found in many fields of sciences: geology, fluid mechanics, thermodynamics, microbiology or chemistry. Problem is relatively complicated due to complexity of the system which contains three phases: water, air and soil skeleton. The flow of water in such a medium can be described using two-phase (2PH) flow formulation, which accounts the inflow of air and water phases, or with simplified model known as Richards (RE) equation where only water flow is taken into account. In many well known programs available in the market (like SeepW, STOMP) the primary interest is only the water flow and the flow of air is omitted. As a result Richard equation in used more often. It’s main assumption is that pore air is continuous and has connection with atmospheric air which is equivalent to infinite mobility of the air phase during all simulation. This paper presents a brief review of the influence of the air phase in soil on water flow and pore pressure generation, with focus on applications related to infiltration process occurring in the large areas. An irrigation effect of rice fields with shallow water table has been investigated. To assess the impact of the gas phase various lengths of the infiltration zone have been considered. Numerical simulations are carried out to investigate the differences between the Richards equation and the two-phase flow model, using an in-house code based on the finite volume method.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.