Issue |
E3S Web Conf.
Volume 17, 2017
9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017
|
|
---|---|---|
Article Number | 00094 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20171700094 | |
Published online | 24 May 2017 |
Influence of the air phase on water flow in dikes
Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geotechnics, Geology and Marine Civil Engineering, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
* Corresponding author: wittisle@pg.gda.pl
Numerical models are often used to describe flow and deformation processes occurring in dikes during flood events. Modeling of such phenomena is a challenging task, due to the complexity of the system, consisting of three material phases: soil skeleton, pore water and pore air. Additional difficulties are transient loading caused by variable in time water levels, heterogeneity of the soil or air trapping. This paper presents a brief review of the influence of the air phase in soil on water flow and pore pressure generation, with focus on applications related to stability of dikes, earth dams and similar structures. Numerical simulations are carried out to investigate the differences between the Richards equation and the two-phase flow model, using an in-house code based on the finite volume method. A variety of boundary problems are considered, including seepage through flood dikes, dike overtopping and water level fluctuations. Special attention is paid to the problem of air trapping, which occurs when water flows over the top of a dike. Such a phenomenon occurred during experiments on model dikes reported in the literature, ultimately leading to development of cracks and damages in dike structure.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.