Issue |
E3S Web Conf.
Volume 45, 2018
VI International Conference of Science and Technology INFRAEKO 2018 Modern Cities. Infrastructure and Environment
|
|
---|---|---|
Article Number | 00056 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20184500056 | |
Published online | 30 July 2018 |
Towards a sustainable approach to wastewater treatment strategy for eutrophication abatement
AGH University of Science and Technology, Faculty of Surveying and Environmental Engineering, Department of Environmental Mangement and Protection. Al. Mickiewicza 30, 30-059 Kraków
* Corresponding author: elenad@agh.edu.pl
Eutrophication is one of the consequences of the negative anthropogenic impact on aquatic ecosystems. It leads to the degradation of both sweet and marine ecosystems, constituting a kind of secondary pollution of waters, which disturbs all types of their use. Undertakings related to preventing the negative effects of eutrophication are mainly conducted towards reducing the loads of nutrients introduced into surface waters and controlling the entire conditions in aquatic ecosystems in order to limit the development of aquatic vegetation. The increasingly restrictive legal requirement regarding the content of nitrogen and phosphorus in wastewater discharged into recipients enforces the application of expensive treatment technologies, and the public is becoming more aware of the rising costs of water and wastewater fees. In addition, wastewater treatment is a factor which has a negative impact on air quality due to greenhouse gas emissions and generates other environmental problems. The challenge for facilities, however, is determining which treatment alternatives will best meet their needs, both technically and financially, and to choose the most sustainable path. The problem of establishing a reasonable level of nutrient removal from wastewater, justified from an ecological and economic point of view is discussed in the paper.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.