Issue |
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
|
|
---|---|---|
Article Number | 01038 | |
Number of page(s) | 4 | |
Section | Energy Engineering, Materials and Technology | |
DOI | https://doi.org/10.1051/e3sconf/20185301038 | |
Published online | 14 September 2018 |
Influence of Airflow Field on Food Freezing and Energy Consumption in Cold Storage
School of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168 Shenyang, China
* Corresponding author: wgq_hit@126.com
Currently most food products are cooled and frozen in air-blast cold storage to prolong storage time. The airflow field distribution in storage has a great impact on the process of food freezing and energy cost by that. In this paper, a transient model of food freezing considering airflow field was developed to simulation the temperature profile of air and food products during freezing process. A lumped parameter model was used to predict the temperature and moisture profile of air, which connected all other components together, such as air coolers, food products, envelop enclosure and refrigeration system. A finite difference method was employed to model the heat transfer inside food products during freezing, where the mass transfer was neglected as the food products were wrapped with polystyrene films. Unit load factor method was applied to calculate the sensible heat refrigeration capacity and thus the total capacity of air coolers. The simulation was conducted on a large cold storage filled with large quantities of packaged food products. Results show that there are great differences in airflow field distribution at different locations in cold storage, which lead to spacial differences in freezing time required. Inappropriate set point of freezing time prolongs freezing process unnecessarily and leads to extra energy consumption. Operational mode of air coolers has a great impact on the total energy consumption, as they consume energy themselves and release equivalent heat into storage simultaneously.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.