Issue |
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 4 | |
Section | Energy Equipment and Application | |
DOI | https://doi.org/10.1051/e3sconf/20185302004 | |
Published online | 14 September 2018 |
Numerical Simulation of Aerodynamic Performance of Off-grid Small Vertical Axis Wind Turbine
1
Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin, 541004, China
2
Department of Electrical and Mechanical Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
In this paper, a 2D off-grid small compact model of vertical axis wind turbine was established. The sliding grid technology, the RNG turbulence model and the Coupld algorithm was applied to simulate the unsteady value of the model's aerodynamic performance. Through the analysis on the flow field at difference moments, the rules about velocity fields, vortices distributions and the wind turbine's total torque were obtained. The results show that: the speed around wind turbine blades have obvious gradient, and the velocity distribution at different times show large differences in the computional domain. In the rotating domain vorticity is large. With away from the rotation domain, vorticity reduced quickly. In the process of rotating for vertical axis wind turbine, the wind turbine's total torque showed alternating positive and negative changes.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.