Issue |
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
|
|
---|---|---|
Article Number | 03031 | |
Number of page(s) | 5 | |
Section | Environment Engineering, Environmental Safety and Detection | |
DOI | https://doi.org/10.1051/e3sconf/20185303031 | |
Published online | 14 September 2018 |
Numerical Simulation of Surrounding Rock Stress under Different Overlying Strata Combinations in Sijiazhuang Mine
1
State Key Laboratory of Gas Disaster Monitoring and Emergency Technology, Chongqing, 400037, China ;
2
Chongqing Research Institute of China Coal Technology Group, Chongqing, 400037, China
* Corresponding author: hjun987@126.com
Sijiazhuang coal mine is taken as an example in this paper. Both the theoretic model and the numerical simulation are carried out to analyze the stress distribution regularity on the surrounding rock of stope face under different overlying strata combinations by using discrete element method. Under different combinations of the overlying strata, the results indicate that the regularity of stress distribution around stope face is roughly the same, i.e. the stress concentration of different degree appears in both ends, and the region of pressure relief exist above the stope face. Furthermore, destruction degree of the roof in stope face is different under various overlying strata combinations. On the eve of the first weighting, the different combinations present different phenomenon of concentration, especially the soft-hard-soft combination and hard-soft-hard combination.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.