Issue |
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
|
|
---|---|---|
Article Number | 04024 | |
Number of page(s) | 5 | |
Section | Environmental Protection, Pollution and Treatment | |
DOI | https://doi.org/10.1051/e3sconf/20185304024 | |
Published online | 14 September 2018 |
Study on Water Disaster Prevention and Control Technology under Condition of Extra-thick Coal Seam with Slicing Fullmechanized Caving Mining
1
Mine Safety Technology Branch of China Coal Research Institute, Beijing 100013, China
2
State Key Laboratory of Coal Mining and Clean Utilization, China Coal Research Institute, Beijing 100013, China
3
Faculty of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
* Corresponding author: Jianghua_Lee@163.com
Some coal seams belong to cretaceous strata in the east of Inner Mongolia, China. There are obvious differences of rock characteristics and mechanical properties between Cretaceous and Carboniferous- Permian strata. The overburden failure characteristics of extra-thick coal seam with slicing full-mechanized caving mining are studied through rock mechanics experiment, field observation and theoretical analysis and so on. Water disaster prevention and control method of roof and goaf is put forward under the condition of extra-thick coal seam with slicing full-mechanized caving mining. The final research results include: (1) The rock of cretaceous strata has low strength and soft characteristic, its stability is very poor, cretaceous rock belongs to weak type; (2) Under the condition of extra-thick coal seam with slicing full-mechanized caving mining, the ratio between caving zone and mining height of field observation result is 4.58~4.74, the observation results of two boreholes are close; (3) It is significantly effective to prevent and control water disaster from goaf through roof hole drainage method, coal and rock safety pillar remain method is used to limit mining height under the Tertiary gravel aquifer, which makes the working face exploit safely.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.