Issue |
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
|
|
---|---|---|
Article Number | 04038 | |
Number of page(s) | 8 | |
Section | Environmental Protection, Pollution and Treatment | |
DOI | https://doi.org/10.1051/e3sconf/20185304038 | |
Published online | 14 September 2018 |
Combined Removal Of NOx And SO2 From Flue Gas At Low Temperature
1
PH.D, Huadian Electric Power Research Institute, NO. 1 Xiyuan 10 Road, Xihu District, Hangzhou Zhejiang Province, 310030, China
2
ENGINEER, Huadian Electric Power Research Institute, NO. 2 Xiyuan 9 Road, Xihu District, Hangzhou Zhejiang Province, 310030, China
A method was proposed to remove NOx and SO2 in flue gas by using the sulfinyl functional group as a catalyst. Ozone is introduced into the flue gas to oxidize NO. Soluble NO2 and SO2 reacted with ammonia to form ammonium sulfate and ammonium nitrate, which were the raw material of the compound fertilizer. A small pilot is built in a container that can be easily transported to power plant and extracts the actual flue gas directly from the gas duct. In order to obtain the best the SO2 and NOX removal efficiency in this experiment, many parameters were changed. Such as flue gas flow, ozone / NOX ratio, liquid-gas ratio, flue gas temperature, catalyst type, catalyst concentration, solution pH value. Results indicated that SO2 was cleaned up quite efficiently and the removal efficiency was nearly 99% under all conditions. the best NOX removal efficiency can reach 88%. The NOX removal efficiency depended primarily on ozone / NOX ratio, and the temperature of flue gas also had influence on the NOX removal efficiency. The optimum pH range is 5.6-6.3. After inspection by authoritative institutions, the quality of fertilizers is superior to national standards.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.