Issue |
E3S Web Conf.
Volume 64, 2018
2018 3rd International Conference on Power and Renewable Energy
|
|
---|---|---|
Article Number | 06010 | |
Number of page(s) | 6 | |
Section | Photovoltaic Systems and Power Generation Technologies | |
DOI | https://doi.org/10.1051/e3sconf/20186406010 | |
Published online | 27 November 2018 |
Wake and Turbulence Analysis for Wind Turbine Layouts in an Island
1 Faculty of Engineering and Science, University of Agder, PO Box 422, NO 4604, Kristiansand, Norway
2 Wind Farm Designs, Kristiansand, Norway
3 Department of Science and Technology, University of the Faroe Islands, Torshavn, Faroe Islands
There is a big wind energy potential in supplying the power in an island and most of the islands are off-grid. Due to the limited area in island(s), there is need to find appropriate layout / location for wind turbines suited to the local wind conditions. In this paper, we have considered the wind resources data of an island in Trøndelag region of the Northern Norway, situated on the coastal line. The wind resources data of this island have been analysed for wake losses and turbulence on wind turbines for determining appropriate locations of wind turbines in this island. These analyses are very important for understanding the fatigue and mechanical stress on the wind turbines. In this work, semi empirical wake model has been used for wake losses analysis with wind speed and turbine spacings. The Jensen wake model used for the wake loss analysis due to its high degree of accuracy and the Frandsen model for characterizing the turbulent loading. The variations of the losses in the wind energy production of the down-wind turbine relative to the up-wind turbine and, the down-stream turbulence have been analysed for various turbine distances. The special emphasis has been taken for the case of wind turbine spacing, leading to the turbulence conditions for satisfying the IEC 61400-1 conditions to find the wind turbine layout in this island. The energy production of down-wind turbines has been decreased from 2 to 20% due to the lower wind speeds as they are located behind up-wind turbine, resulting in decreasing the overall energy production of the wind farm. Also, the higher wake losses have contributed to the effective turbulence, which has reduced the overall energy production from the wind farm. In this case study, the required distance for wind turbines have been changed to 6 rotor diameters for increasing the energy gain. From the results, it has been estimated that the marginal change in wake losses by moving the down-stream wind turbine by one rotor diameter distance has been in the range of 0.5 to 1% only and it is insignificant. In the full-length paper, the wake effects with wind speed variations and the wind turbine locations will be reported for reducing the wake losses on the down-stream wind turbine. The Frandsen model has been used for analysing turbulence loading on the down-stream wind turbine as per IEC 61400-1 criteria. In larger wind farms, the high turbulence from the up-stream wind turbines increases the fatigues on the turbines of the wind farm. In this work, we have used the effective turbulence criteria at a certain distance between up-stream and down-stream turbines for minimizing the fatigue load level. The sensitivity analysis on wake and turbulence analysis will be reported in the full-length paper. Results from this work will be useful for finding wind farm layouts in an island for utilizing effectively the wind energy resources and electrification using wind power plants.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.