Issue |
E3S Web Conf.
Volume 65, 2018
International Conference on Civil and Environmental Engineering (ICCEE 2018)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 10 | |
Section | Construction & Building Materials | |
DOI | https://doi.org/10.1051/e3sconf/20186502001 | |
Published online | 26 November 2018 |
Compressive Strength and Dimensional Stability of Palm Oil Empty Fruit Bunch Fibre Reinforced Foamed Concrete
Department of Civil Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Selangor, Malaysia
* Corresponding author: sklim@utar.edu.my
Rapid drying shrinkage is an important factor in causing cracks of concrete. This research was aimed at studying the effects of Palm Oil Empty Fruited Bunch (POEFB) fibre on the drying shrinkage behaviour and compressive strength of foamed concrete (FC) under two different curing conditions. The adopted curing conditions were air curing and tropical natural weather curing. Two volume fractions of POEFB fibre were used, which were 0.25% and 0.50% based on dry mix weight with 1-2 cm in length. The dimensional stability of the control specimen and POEFB fibre reinforced FCs was obtained by cumulating the measured linear shrinkage or expansion due to different curing conditions. The results from the two different specimens were compared. The results showed that specimens reinforced with POEFB fibre and cured under tropical natural weather condition attained lesser variations of dimensional stability and higher 90-day strength performance index than the reference mix without POEFB fibre. This improvement was attributed to the ability of POEFB fibre to bridge the cement matrix, and irregular wetting process under tropical natural weather curing condition had enabled more production of Calcium Silicate Hydrate gels that gradually blocked the penetration of water into the specimens and increased the compressive strength. It is observed that 11.43% and 4.46% of improvement in 90-day strength performance index were obtained in natural weather cured 0.5% of POEFB fibre reinforced specimen, with corresponded to the reference mix and 0.25% of POEFB fibre reinforced specimens, respectively.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.