Open Access
Issue
E3S Web Conf.
Volume 65, 2018
International Conference on Civil and Environmental Engineering (ICCEE 2018)
Article Number 02001
Number of page(s) 10
Section Construction & Building Materials
DOI https://doi.org/10.1051/e3sconf/20186502001
Published online 26 November 2018
  1. A. D. Oǧuz, G. Rstem, C. A. Abdulkadir, Effects of steel fibres on the mechanical properties of natural lightweight aggregate concrete, Materials Letters, 59(27), 3357-3363 (2005) [Google Scholar]
  2. B. Chen, J. Liu, Contribution of hybrid fibres on the properties of the high-strength lightweight concrete having good workability, Cement and Concrete Research, 35(5), 913-917 (2005) [CrossRef] [Google Scholar]
  3. A. Sivakumar, M. Santhanam, Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres, Cement and Concrete Composites, 29(8), 603-608 (2007) [CrossRef] [Google Scholar]
  4. B. Chen, Z. Wu, N. Liu, Experimental Research on Properties of High-Strength Foamed Concrete, J. of Materials in Civil Engineering, 24(1), 113-118 (2012) [CrossRef] [Google Scholar]
  5. K. Aghaee, M.A. Yazdi, K.D. Tsavdaridis, Mechanical properties of structural lightweight concrete reinforced with waste steel wires. Magazine of Concrete Research, 66(1). 1-9 (2014) [CrossRef] [Google Scholar]
  6. R. Yu, D. van Onna, P. Spiesz, Q. Yu, H. Brouwers, Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass, J. Cleaner Production, 112, 690-701 (2016) [CrossRef] [Google Scholar]
  7. H. Hardjasaputra, G. Ng, G. Urgessa, G. Lesmana, S. Sidharta1, Performance of lightweight natural-fiber reinforced concrete, MATEC Web of Conferences, 138, 01009 (2017) [CrossRef] [Google Scholar]
  8. J. Li, J. Niu, C. Wan, X. Liu, Z. Jin, Comparison of flexural property between high performance polypropylene fiber reinforced lightweight aggregate concrete and steel fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 157, 729-736 (2017) [CrossRef] [Google Scholar]
  9. A. M. Brandt, Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering, Composites Structures, 86(1-3), 3-9 (2008) [Google Scholar]
  10. A. Kriker, G. Debicki, A. Bali, M. M. Khenfer, M. Chabannet, Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate, Cement and Concrete Composites, 27(5), 554-564 (2005) [Google Scholar]
  11. A. Majid, L. Anthony, S. Hou, C. Nawawi, Mechanical and dynamic properties of coconut fibre reinforced concrete, Construction and Building Materials, 30, 814-825 (2012) [CrossRef] [Google Scholar]
  12. C. Sumit, P. K. Sarada, R. Aparna, K. B. Ratan, A. Basudam, S.B. Majumder, Improvement of the mechanical properties of jute fibre reinforced cement mortar: A statistical approach, Construction and Building Materials, 38, 776-784 (2013) [CrossRef] [Google Scholar]
  13. N. Zahra, F. Mehdi, E. Ghanbar, H. Yahya, Manufacture of lignocellulosic fibre-cement boards containing foaming agent, Construction and Building Materials, 35, 408-413 (2012) [CrossRef] [Google Scholar]
  14. A. Roslan, F. K. Mohammad, A. N. A. Borhan, S. M. Arif, A study on the Malaysian Oil Palm Biomass Sector - Supply and Perception of Palm Oil Millers, Oil Palm Industry Economic J., 11(1), 28-41 (2011) [Google Scholar]
  15. M. S. Rosnah, W. H. Wan Hasamudin, M. T. Ab Gapor, H. Kamarudin, Thermal properties of oil palm fibre, cellulose and its derivatives, J. of Oil Palm Research, 18, 272-277 (2006) [Google Scholar]
  16. America Society of Testing and Materials, ASTM C 150-05: Standard Specification for Portland Cement, ASTM International, Conshohocken, Pennsylvania, United States (2007) [Google Scholar]
  17. H. Kurama, I. B. Topcu, C. Karakurt, Properties of the autoclaved aerated concrete produced from coal bottom ash, J. of Materials Processing Technology, 209(2), 767-773 (2009) [CrossRef] [Google Scholar]
  18. K. Ramamurthy, E. K. K. Nambiar, G. I. S. Ranjani, A classification of studies on properties of foam concrete, J. of Cement and Concrete Composites, 31, 388-396 (2009) [Google Scholar]
  19. America Society of Testing and Materials, ASTM C1437: Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, Conshohocken, Pennsylvania, United States (2007) [Google Scholar]
  20. America Society of Testing and Materials, ASTM C1611: Standard Test Method for Slump Flow of Self Consolidating Concrete, ASTM International, Conshohocken, Pennsylvania, United States (2007) [Google Scholar]
  21. British Standard Institute, BS EN 12390-3: Testing hardened concrete - Part 3: Compressive strength of test specimens, BSI, London (2002) [Google Scholar]
  22. RILEM CPC9, Technical recommendations for the testing and use of construction materials: Measurement of shrinkage and swelling of concrete, 1975, E & FN SPON, London (1994) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.