Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 6 | |
Section | Smart Grid and Regulation | |
DOI | https://doi.org/10.1051/e3sconf/20186701014 | |
Published online | 26 November 2018 |
CFD Simulation of Silica Gel as an Adsorbent on Finned Tube Adsorbent Bed
Mechanical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok 16425, Indonesia
* Coresponding author: nasruddin@eng.ui.ac.id
The adsorption technology is becoming the more expected solution by today’s researchers for fix the energy and environmental issues. The main part of the cooling system adsorption is adsorbent and adsorbate. One of the most widely used adsorbents in research of adsorption technology is silica gel. A new silica gel-water adsorption chiller design was developed that composed of two sorption chambers with compact fin tube heat exchangers as adsorber, condenser, and evaporator. Energy, mass, and momentum conservation equations of the adsorption systems have been used for the CFD two and three dimensional models. The geometry of simulation is simply made within silica gel layer between two fins. The simulation is also implemented using a finite volume method through the CFD software Fluent. User defined functions are given to modify the energy, mass, and momentum conservation equations. The simulation of adsorption process is adjusted at unsteady condition. Adsorption and desorption processes are simulated with room temperature for cooling water inlet at temperature 305.15 °K, hot water inlet at temperature 353.15 °K, mass flow rate cooling water inlet at 0.3 kg/s and pressure 32 KPa. For the whole adsorbent bed area, the result shows that the highest absolute adsorption rate at the outer surface, while the lowest rate is at the center. After adsorption was finished, the condition is reversed. The highest absolute adsorption rate is achieved at center, while the lowest rate is achieved at the outer surface.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.