Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 6 | |
Section | Bioenergy | |
DOI | https://doi.org/10.1051/e3sconf/20186702006 | |
Published online | 26 November 2018 |
Effect of aeration in simple photobioreactor system for biomass production of synechococcus sp. (cyanobacteria) HS-7 and HS-9 as biofuel feedstock
1
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
2
Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
* Coresponding author: nining.prihantini@gmail.com
People have been searching toward to biofuel as a prominent alternative to replace oil fuel. Microalgae biomass, specifically from the genus Synechococcus, has been used as the biofuel’s feedstock as it’s able to grow faster than the other groups at cyanobacteria. Strains being used were isolated from Ciseeng hot spring (HS-7) and Rawa Danau Banten hot spring (HS-9). The intensity of aeration (IA) were given as high (330 bubbles/min) and low (220 bubbles/min) to understand its influence on feedstock growth. Change in growth was observed microscopically using direct methods over fourteen days. At the end of the experiment, result demonstrate that high IA gaves rise to Synechococcus biomass density at 125,21 × 106 cell/ml and 100,63 × 106 cell/ml for HS-7 & HS-9 respectively. Meanwhile, low IA gaves rise to Synechococcus biomass density at 21,7 × 106 cell/ml and 10,61 × 106 cell/ml for HS-7 & HS-9 accordingly. Positive trend also follows the growth at Synechococcus biomass with high IA, but did not apply to the system with low IA. The difference in biomass production occurred because of discrepancies in cell and nutrient distribution inside the photobioreactor system. Therefore, it implies that proper controlling of IA would affect the yielding of feedstock for producing biofuels.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.