Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 02048 | |
Number of page(s) | 11 | |
Section | Bioenergy | |
DOI | https://doi.org/10.1051/e3sconf/20186702048 | |
Published online | 26 November 2018 |
Solar panel performance analysis under indonesian tropic climate using sandia PV array performance model and five parameter performance model
1
Department of Electrical Engineering, Faculty of Engineering, Universitas Khairun, Ternate, Indonesia
2
Tropical Renewable Energy Centre, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
3
Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
* Coresponding author: ekoas@eng.ui.ac.id
Evaluation and monitoring of solar panel are need to be done, primarily related to how much energy is produced. Energy production by a solar panel is affected by the characteristics of climate or weather of a particular location such as solar radiation and ambient temperature. This study aimed to compare two models of solar panel performance calculation, i.e., Sandia PV Array Model and Five Parameter Model by considering the tropical climate of Indonesia and see the effect of temperature and solar radiation changes on the results of the calculations of both methods through the I-V curve. The types of solar panels on monitored are a monocrystalline, polycrystalline, and thin film. The results show that the energy produced by Sandia PV Array Performance Model for the three types of solar panels are 54.36 Wdc, 51.57 Wdc, and 39.62 Wdc, respectively. Five Parameter Performance Model results are 56.58 Wdc, 52.7 Wdc, and 43.29, respectively. These results show that with a small amount of data, the Five Parameter Model is more optimal and efficient for the tropics compared to Sandia PV Array Model.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.