Open Access
Issue
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 02048
Number of page(s) 11
Section Bioenergy
DOI https://doi.org/10.1051/e3sconf/20186702048
Published online 26 November 2018
  1. Bloomberg, “Global Trends in Renewable Energy Investment 2016,” p. 84. [Google Scholar]
  2. O. O. Ogbomo, E. H. Amalu, N. N. Ekere, and P. O. Olagbegi, “A review of photovoltaic module technologies for increased performance in tropical climate,” Renew. Sustain. Energy Rev., vol. 75, pp. 1225–1238, 2017. [CrossRef] [Google Scholar]
  3. M. Schweiger, W. Herrmann, A. Gerber, and U. Rau, “Understanding the energy yield of photovoltaic modules in different climates by linear performance loss analysis of the module performance ratio,” IET Renew. Power Gener., vol. 11, no. 5, pp. 558–565, 2017. [CrossRef] [Google Scholar]
  4. S. Guha, J. Y. United, and S. Ovonic, “High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules Final Technical Progress Report High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules Final Technical Progress Report,” no. October, 2005. [Google Scholar]
  5. B. D. Tsai, Y. T. Hsu, T. T. Lin, L. M. Fu, C. H. Tsai, and J. C. Leong, “Performance of an INER HCPV module in NPUST,” Energy Procedia, vol. 14, pp. 893–898, 2012. [CrossRef] [Google Scholar]
  6. T. Dierauf, A. Growitz, S. Kurtz, and C. Hansen, “Weather-Corrected Performance Ratio Technical Report NREL/TP-5200-57991,” 2013. [Google Scholar]
  7. E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy, vol. 83, no. 5, pp. 614–624, 2009. [CrossRef] [Google Scholar]
  8. S. Dubey, J. N. Sarvaiya, and B. Seshadri, “Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review,” Energy Procedia, vol. 33, pp. 311–321, 2013. [CrossRef] [Google Scholar]
  9. E. Skoplaki and J. A. Palyvos, “Operating temperature of photovoltaic modules: A survey of pertinent correlations,” vol. 34, pp. 23–29, 2009. [Google Scholar]
  10. O. M. Eludoyin, I. O. Adelekan, R. Webster, and A. O. Eludoyin, “Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria,” vol. 2018, no. October 2013, pp. 2000–2018, 2018. [Google Scholar]
  11. C. U. Ike, “The Effect of Temperature on the Performance of A Photovoltaic Solar System In Eastern Nigeria,” vol. 3, no. 12, pp. 10–14, 2013. [Google Scholar]
  12. S. Mekhilef, R. Saidur, and M. Kamalisarvestani, “Effect of dust, humidity and air velocity on efficiency of photovoltaic cells,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2920–2925, 2012. [CrossRef] [Google Scholar]
  13. A. Ndiaye, C. M. F. Kébé, A. Charki, and V. Sambou, “Photovoltaic Platform for Investigating PV Module Degradation,” Energy Procedia, vol. 74, pp. 1370–1380, 2015. [CrossRef] [Google Scholar]
  14. T. M. Walsh, Z. Xiong, and Y. Sheng, “Energy Procedia Singapore Modules - Optimised PV Modules for the Tropics,” vol. 00, no. 2011, 2012. [Google Scholar]
  15. John A. Duffie and William A. Beckman, “Solar Engineering of Thermal Processes.” New York:Wiley-Interscience Publication, 1980. [Google Scholar]
  16. http://www.pveducation.org/pvcdrom/2-propertiessunlight/solar-time, “Solar Time | PVEducation.” 2108. [Google Scholar]
  17. Http://www.pveducation.org/pvcdrom/propertiesof-sunlight/declination-angle, “Declination Angle PVEducation.” 2018. [Google Scholar]
  18. Http://www.pveducation.org/pvcdrom/propertiesof-sunlight/elevation-angle, “Elevation Angle PVEducation.” 2018. [Google Scholar]
  19. http://www.pveducation.org/pvcdrom/propertiesof-sunlight/azimuth-angle, “Azimuth Angle PVEducation.” 2018. [Google Scholar]
  20. W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” vol. 80, pp. 78–88, 2005. [Google Scholar]
  21. https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/plane-of-array-poairradiance/calculating-poa-irradiance/poa-beam/, “PV Performance Modeling Collaborative POA Beam.” 2018. [Google Scholar]
  22. https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/plane-of-array-poairradiance/calculating-poa-irradiance/poa-skydiffuse/isotropic-sky-diffuse-model/, “PV Performance Modeling Collaborative Isotropic Sky Diffuse Model.” 2018. [Google Scholar]
  23. https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/plane-of-array-poairradiance/calculating-poa-irradiance/poa-groundreflected/, “PV Performance Modeling Collaborative POA Ground Reflected.” 2018. [Google Scholar]
  24. https://pvpmc.sandia.gov/modeling-steps/1-weather-design-inputs/plane-of-array-poairradiance/, “PV Performance Modeling Collaborative Plane of Array (POA) Irradiance.” 2018. [Google Scholar]
  25. http://www.pveducation.org/pvcdrom/propertiesof-sunlight/air-mass, “Air Mass PVEducation.” 2018. [Google Scholar]
  26. D.King J.Kratochvil and W.Boyson, “Measuring Solar Spectral and Angle-of-Incidence Effects on PV Modules and Solar Irradiance Sensors.” Sandia National Laboratories, 1997. [Google Scholar]
  27. D. L. King, W. E. Boyson, and J. A. Kratochvil, “PHOTOVOLTAIC ARRAY PERFORMANCE MODEL,” no. November, 2003. [Google Scholar]
  28. https://pvpmc.sandia.gov/modeling-steps/2-dcmodule-iv/module-temperature/sandia-moduletemperature-model/, “PV Performance Modeling Collaborative Sandia Module Temperature Model.” 2018. [Google Scholar]
  29. A. Wagner, “Peak-Power and Internal Series Resistance Measurement Under Natural Ambient Conditions,” Proc. EuroSun 2000, pp. 1–7, 2000. [Google Scholar]
  30. C. W. Hansen, “Parameter estimation for single diode models of photovoltaic modules,” Sandia Rep., no. SAND2015-2065, pp. 1–68, 2015. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.