Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 03025 | |
Number of page(s) | 5 | |
Section | Multifunctional and Advanced Materials | |
DOI | https://doi.org/10.1051/e3sconf/20186703025 | |
Published online | 26 November 2018 |
Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid
Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
* Coresponding author: usman@che.ui.ac.id
Relentless development of technology triggers the smartphone production. The increasing number of smartphone use is followed by escalation of its waste, where its battery is usually left unrecycled. The analysis of the battery content shows that it is consist of a considerable amount of cobalt that can be reutilized based on its relatively high economic value, which valued USD 61/kg. Leaching as a form of hydrometallurgy was used in this research to recover cobalt using HNO3 as leaching agent and H2O2 as reducing agent. Process optimization was done by varying concentration of nitric acid and reaction temperature. The result showed that the optimum leaching condition was earned in 30 minutes of leaching reaction using 3.0 M HNO3 at the reaction temperature of 90°C, resulting 98.01% of cobalt leaching efficiency. Reaction kinetics study was also done in this research and the result demonstrates that recovery of cobalt from spent lithium-ion battery by nitric acid leaching was controlled by diffusion through product layer with activation energy value of 44.67 kJ/mol.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.