Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 03028 | |
Number of page(s) | 5 | |
Section | Multifunctional and Advanced Materials | |
DOI | https://doi.org/10.1051/e3sconf/20186703028 | |
Published online | 26 November 2018 |
Optimization of Li4Ti5O12 (LTO) performance through the addition of ZnO-Nanorods using sol-gel solid-state method process as half-cell lithium-ion battery anode
1
Department of Metallurgical and Materials Engineering, Universitas Indonesia, Kampus UI, Depok, Jawa Barat 16424, Indonesia
2
Department Electrical Engineering, Universitas Indonesia, Kampus UI, Depok, Jawa Barat 16424, Indonesia
3
Center for Physics Research, LIPI, Komplek PUSPIPTEK, Banten, Tangerang Selatan, 15314, Indonesia
Lithium-ion batteries have been a substantial power source for most electrical devices nowadays. Performance optimization for anode of lithium-ion batteries (LIBs) can be conducted by adding ZnO through sol-gel solid-state reaction. In this research, the Li4Ti5O12 (LTO) used was synthesized through sol-gel solid-state process and directly added with ZnO-nanorods obtained from aging and annealing process. LTO-ZnO obtained was characterized to determine the main phase and chemical composition by XRD and SEM-EDS respectively. Electrochemical performance of LTO-ZnO was tested by EIS, CV, and CD. ZnO-nanorods characterization with SEM-EDS results shows that the ZnO inside the LTO dispersed homogeneously. Characterization using XRD revealed that the ZnO successfully enter the LTO with the variation of amount of 4, 7, and 10 wt % of ZnO. Electric conductivity test shows improvement at an optimum addition amount of ZnO at 4 wt%, although BET result shows at the optimum amount of surface area with 96.459 m2/g. Electrochemical performance result shows optimum performance in ZnO at 4 wt% for its ability to withstand EIS test at 20C compared to 7 wt% and 10 wt%. Also, capacity of 4 wt% added is 150.8 mAh/g compared to 7 wt% with 134.1 mAh/g and 10 wt% with 118.3 mAh/g.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.