Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 03037 | |
Number of page(s) | 6 | |
Section | Multifunctional and Advanced Materials | |
DOI | https://doi.org/10.1051/e3sconf/20186703037 | |
Published online | 26 November 2018 |
The Effect of Mass Ratio of Ferrocene to Camphor as Carbon Source and Reaction Time on the Growth of Carbon Nanotubes
1
Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI-Depok, Jawa Barat 16424, Indonesia
2
Sustainable Energy Research Group, Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI-Depok, Jawa Barat 16424, Indonesia
* Coresponding author: wulan@che.ui.ac.id
This research aims to identify the best reaction time and mass ratio of camphor to ferrocene as carbon source in the growth of carbon nanotube (CNT). Ferrocene is used as carbon source and catalyst with stainless steel (SS)-316 type gauze as substrate.Camphor as alternative carbon source is intended to improve the CNT synthesis results. This research has shown that benzene, toluene, and xylene dominate camphor decomposition, so the addition will produce good quality CNT and increase the yield. The variation of mass ratio of camphor to ferrocene was 3:1, 2:1, 1:2, 1:3 and the variation of reaction time was 10,20,30,40, and 60 min. The synthesis results of the CNT were characterized using FESEM-EDS while the ferrocene and camphor decomposition gas was analyzed by GC-FID. The best quality of CNT was obtained at 1:2 mass ratio with yield 37%, carbon percentage of 76.98% and diameter of 77-151 nm. Increasing the reaction time from 10 to 20 minutes will increase the yield and quality of CNTs. The yield and quality of the CNT decreased after a reaction time of 30 minutes due to the deactivation of the catalyst and the closure of the active sites by nucleation and carbon growth.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.