Issue |
E3S Web Conf.
Volume 69, 2018
International Conference Green Energy and Smart Grids (GESG 2018)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 11 | |
Section | Properties, Regimes and Development of Renewable Energy Sources | |
DOI | https://doi.org/10.1051/e3sconf/20186901009 | |
Published online | 27 November 2018 |
Decentralized Control of PV Inverter to Mitigate Voltage Rise in Resistive Feeder
Department of Electrical Engineering National Sun Yat-sen University Taiwan
* Corresponding author: tllee@mail.ee.nsysu.edu.tw
Increasing installation of photovoltaic (PV) in the distribution power system has resulted in serious voltage rise, limiting grid-connectable power. This scenario becomes significant in the low-voltage resistive feeder. This paper proposes a decentralized control for distributed PV inverters to mitigate voltage rise. Instead of MPPT (maximum power point tracking) mode, the proposed PV inverter is able to curtail its real power and compensate the reactive power according to the impedance at the installation location. The drooped characteristics between the output power and the impedance are developed so that the PV inverters are able to cooperatively suppress voltage rise based on their local voltage measurement only. Therefore, PV inverters are allowed to supply more power to the utility within voltage limitation. Simulations are conducted to guarantee the proposed control on improvement of voltage rise considering different parameter of feeder. A lab-scaled prototype circuit is established to verify effectiveness in a resistive feeder.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.