Issue |
E3S Web Conf.
Volume 78, 2019
2018 International Seminar on Food Safety and Environmental Engineering (FSEE 2018)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 4 | |
Section | Environmental Biotechnology and Environmental Equipment | |
DOI | https://doi.org/10.1051/e3sconf/20197803001 | |
Published online | 15 January 2019 |
A systems engineering framework for the design of bioprocess operator training simulators
1
Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH
2
Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
* Corresponding author: joseph.isimite.15@ucl.ac.uk
Operator training simulators (OTS) are widely used in several industries including chemical processing, oil and gas, medicine, aircraft and nuclear facilities. However, developing a biorefinery OTS is a complex engineering design activity that requires a structured technique. This paper presents a structured methodology that applies design frameworks from other disciplines and a user-centred approach for biorefinery OTS design. These include the definition of end user requirements (operator training needs), and the analysis of these requirements using Quality Function Deployment (QFD). Furthermore, an algorithm for bioprocess optimisation and automatic adjustment of operating parameters is developed for integration into the OTS. This algorithm is based on the Nelder-Mead simplex method for multi-dimensional function minimisation.
Identified user requirements were categorized into primary, secondary and tertiary training needs, with increasing levels of detail from primary to tertiary needs. The relationships between identified operator training needs and OTS technical and functional specifications were investigated, and a priority rating assigned to the most important OTS specifications. Identified OTS specifications were evaluated for robustness to ensure that important features were not omitted from the final design.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.