Issue |
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 6 | |
Section | Computational Fluid Dynamics in Built Environment | |
DOI | https://doi.org/10.1051/e3sconf/20198502006 | |
Published online | 22 February 2019 |
Experimental combustion chamber simulation at transient regimes
Romanian Research and Development Institute for Gas Turbines – COMOTI, bl. Iuliu Maniu, no. 220D, district 6, Bucharest, Romania
* Corresponding author: bogdan.gherman@comoti.ro
The transient regimes in a combustion chamber has to be as short as possible because flame front position and thickness can destroy the combustion chamber in couple seconds. The simulation of such a regime has to be performed unsteady. An experimental combustion chamber it is simulated at two unsteady regimes to see the flame front structure and comparison it is made with the experimental data to validate the results. For this analysis Ansys CFX was used and the turbulent model was DES while the combustion model was Eddy Dissipation. The two cases show different flame front structures while the boundary conditions for the two regimes are very similar.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.