Issue |
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 6 | |
Section | Heat and Mass Transfer in Energy Systems | |
DOI | https://doi.org/10.1051/e3sconf/201912801014 | |
Published online | 08 November 2019 |
Validation of Combustion Models for Lifted Hydrogen Flame
Center of Flow Simulation (CFS), Department of Mechanical and Process Engineering, Düsseldorf University of Applied Sciences,
Münsterstr. 156,
D-40476
Düsseldorf,
Germany
* Corresponding author: alicemal@prof-benim.com
Within a Reynolds Averaged Numerical Simulation (RANS) approach for turbulence modelling, a computational investigation of a turbulent lifted H2/N2 flame is presented. Various turbulent combustion models are considered including the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), and the composition Probability Density Function transport model (PDF) in combination with different detailed and global reaction mechanisms. Turbulence is modelled using the Standard k-ɛ model, which has proven to offer a good accuracy, based on a preceding validation study for an isothermal H2/N2 jet. Results are compared with the published measurements for a lifted H2/N2 flame, and the relative performance ofthe turbulent combustion models are assessed. It is observed that the prediction quality can vary largely depending on the reaction mechanism and the turbulent combustion model. The best and quite satisfactory agreement with experiments is provided by two detailed reaction mechanisms applied with a PDF model.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.