Issue |
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
|
|
---|---|---|
Article Number | 08005 | |
Number of page(s) | 8 | |
Section | Other Topics in Built Environment | |
DOI | https://doi.org/10.1051/e3sconf/20198508005 | |
Published online | 22 February 2019 |
Mechanical and thermal characterization of a beet pulp-starch composite for building applications
1
Groupe de Recherche en Sciences de l'Ingénieur GRESPI, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardennes, Moulin de la Housse, BP 1039, 51687 Cedex 2, France
2
Institut de Chimie Moléculaire de Reims, ICMR-UMR 7312 CNRS, Université de Reims Champagne Ardennes, Moulin de la Housse, BP 1039, 51687 Cedex 2, France
* Corresponding author: hamze.karaky@etudiant.univ-fr-reims.fr
This work shows the making of a new bio-based material for building insulation from sugar beet pulp and potato starch. The material is both lightweight and ecofriendly. The influence of starch/ sugar beet pulp ratio (S/BP) is studied. Four binder mass dosages are considered, 10, 20, 30 and 40% (relative to the beet pulp). Samples are characterized in terms of absolute and bulk density, compressive and flexural strength, as well as thermal properties (thermal conductivity and thermal inertia). The compressive strength increases linearly with the S/BP mass ratio to reach 0.52 MPa and the compressive strain is 30%. The thermal conductivity is to around 0.070 W/m. K. The results obtained shows that increasing starch amount tends to decrease composite porosity but increases thermal conductivity and mechanical properties. Depending on the starch content, beet pulp composites have a good thermal and can be used as building materials.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.