Open Access
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
Article Number 08005
Number of page(s) 8
Section Other Topics in Built Environment
Published online 22 February 2019
  1. Cerolini S, D’Orazio M, Di Perna C, Stazi A. Moisture buffering capacity of highly absorbing materials. Energy Build (2009); 41:164-8. doi:10.1016/j.enbuild.2008.08.006. [Google Scholar]
  2. Niang I, Maalouf C, Moussa T, Bliard C, Samin E, Thomachot-Schneider C, et al. Hygrothermal performance of various Typha-clay composite. J Build Phys (2018). doi:10.1177/1744259118759677. [Google Scholar]
  3. Collet F, Chamoin J, Pretot S, Lanos C. Comparison of the hygric behaviour of three hemp concretes. Energy Build (2013) ;62:294-303. doi:10.1016/j.enbuild.2013.03.010. [Google Scholar]
  4. EU Commision. Trends to 2050. (2013). doi:10.2833/17897. [Google Scholar]
  5. Boussetoua H, Maalouf C, Lachi M, Belhamri A, Moussa T. Mechanical and hygrothermal characteri s ation of cork concrete composite: experimental and modelling study. Eur J Environ Civ Eng (2017) ;8189:1-16. doi:10.1080/19648189.2017.1397551. [CrossRef] [Google Scholar]
  6. B.S. UMURIGIRWA-VASSEUR. Elaboration et caractérisation d ' un agromatériau chanvre-amidon pour le Bâtiment. PhD Thesis REIMS University, 9 december 2014., (2014). [Google Scholar]
  7. Bourdot A, Moussa T, Gacoin A, Maalouf C, Vazquez P, Thomachot-Schneider C, et al. Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy Build (2017) ;153:501-12. doi:10.1016/j.enbuild.2017.08.022. [Google Scholar]
  8. Le AT, Gacoin A, Li A, Mai TH, El Wakil N. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Compos Part B Eng (2015);75:201-11. doi:10.1016/j.compositesb.2015.01.038. [CrossRef] [Google Scholar]
  9. Le AT, Gacoin A, Li A, Mai TH, Rebay M, Delmas Y. Experimental investigation on the mechanical performance of starch-hemp composite materials. Constr Build Mater (2014);61:106-13. doi:10.1016/j.conbuildmat.2014.01.084. [Google Scholar]
  10. Roge, B. M. L’Extraction Du Sucre. Reims: 2005. [Google Scholar]
  11. Nasielski S. Le bon usage de la pulpe surpressée. vol. 132. Tienen (Tirlemont), Belgique: (2009). doi:10.3917/aatc.132.0001. [Google Scholar]
  12. Sun R, Hughes S. Extraction and physico-chemical characterization of pectins from sugar beet pulp. Polym J (1998);30:671-7. doi:10.1295/polymj.30.671. [CrossRef] [Google Scholar]
  13. PHATAK L, CHANG KC, BROWN G. Isolation and Characterization of Pectin in Sugar-Beet Pulp. J Food Sci (1988);53:830-3. doi:10.1111/j.1365-2621.1988.tb08964.x. [Google Scholar]
  14. Chen HM, Fu X, Luo ZG. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem (2015);168:302-10. doi:10.1016/j.foodchem.2014.07.078. [Google Scholar]
  15. Dronnet VM, Renard CMGC, Axelos MAV, Thibault J-F. Binding of divalent metal cations by sugar-beet pulp. Carbohydr Polym (1997);34:73-82. doi:10.1016/S0144-8617(97)00055-6. [Google Scholar]
  16. Monreal P, Mboumba-Mamboundou LB, Dheilly RM, Quéneudec M. Effects of aggregate coating on the hygral properties of lignocellulosic composites. Cem Concr Compos (2011);33:301-8. doi:10.1016/j.cemconcomp.2010.10.017. [Google Scholar]
  17. Boursier B. Amidons natifs et amidons modifiés alimentaires. Tech L’ingénieur Additifs Adjuv Aliment (2005);33:27. [Google Scholar]
  18. Wertz J-L. L’amidon et le PLA : deux biopolymères sur le marché. Wallone, Belgium: (2011). [Google Scholar]
  19. Haba B, Agoudjil B, Boudenne A, Benzarti K. Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr Build Mater (2017);154:963-71. doi:10.1016/j.conbuildmat.2017.08.025. [Google Scholar]
  20. Rahim M, Douzane O, Tran Le AD, Langlet T. Effect of moisture and temperature on thermal properties of three bio-based materials. Constr Build Mater (2016);111:119-27. doi:10.1016/j.conbuildmat.2016.02.061. [Google Scholar]
  21. Glé P, Gourdon E, Arnaud L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl Acoust (2011);72:249-59. doi:10.1016/j.apacoust.2010.11.003. [Google Scholar]
  22. Belakroum R, Gherfi A, Bouchema K, Gharbi A, Kerboua Y, Kadja M, et al. Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers. J Build Eng (2017);12:132-9. doi:10.1016/j.jobe.2017.05.011. [CrossRef] [Google Scholar]
  23. Arnaud L, Gourlay E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr Build Mater (2012);28:50-6. doi:10.1016/j.conbuildmat.2011.07.052. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.