Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 4 | |
Section | Geomaterial Behaviour: Strength, Critical State, Localisation | |
DOI | https://doi.org/10.1051/e3sconf/20199206005 | |
Published online | 25 June 2019 |
Study on the Shear Band of Sand with Various Particle Characteristics Using PIV Analysis
Yamaguchi University, Graduate school of science and technology for innovation, 2-16-1 Tokiwadai Ube Yamaguchi, Japan
* Corresponding author: kajiyama@yamaguchi-u.ac.jp
The phenomenon of ground undergoing large plastic deformation, leading to collapse, occurs due to the localization of unstable deformation. The investigation of shear band is important in order to understand the destructive phenomenon. Therefore, a series of experiments were conducted on sands with different particle characteristics so that behaviour of the shear band of sand under plane strain compression could be investigated. Specifically, Toyoura sand and two kinds of coral sand, hereafter referred to as coral sand A (with smaller average particle size) and coral sand B (with larger average particle size) were used. The shear band was evaluated using PIV (Partial Image Velocimetry) analysis. As a result, it became clear that the relationship between shear inclination angle and internal friction angle does not hold for the two kinds of coral sand because the shear inclination angle is low. The ratio of the average value of the shear band width to the average grain size at the peak was 10 to 20 times, 7 to 10 times, and 5 to 8 times in the order of Toyoura sand, coral sand A, and coral sand B. The sample standard deviation was 0.1 to 0.9 mm, 0.9 to 1.6 mm, and 1.4 to 1.9 mm.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.