Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 09002
Number of page(s) 6
Section Geomaterial Behaviour: Particle Crushing, Destructuration
DOI https://doi.org/10.1051/e3sconf/20199209002
Published online 25 June 2019
  1. Sangrey, D., Naturally cemented sensitive soils. Geotechnique, 1972. 22(1): p. 139-152. [CrossRef] [Google Scholar]
  2. Maccarini, M., Laboratory studies for a weakly bonded artificial soil. 1987. [Google Scholar]
  3. Cuccovillo, T. and M.R. Coop, Yielding and pre-failure deformation of structured sands. Géotechnique, 1997. 47(3): p. 491-508. [CrossRef] [Google Scholar]
  4. Amorosi, A. and S. Rampello, An experimental investigation into the mechanical behaviour of a structured stiff clay. Géotechnique, 2007. 57(2): p. 153-166. [CrossRef] [Google Scholar]
  5. Leroueil, S. and P.R. Vaughan, The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 1990. 40(3): p. 467-488. [CrossRef] [Google Scholar]
  6. Lagioia, R. and R. Nova, An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique, 1995. 45(4): p. 633-648. [CrossRef] [Google Scholar]
  7. Cuccovillo, T. and M.R. Coop, On the mechanics of structured sands. Géotechnique, 1999. 49(6): p. 741-760. [CrossRef] [Google Scholar]
  8. Schofield, A. and P. Wroth, Critical state soil mechanics. Vol. 310. 1968: McGraw-Hill London. [Google Scholar]
  9. Wesley, L.D., Discussion: Structural behaviour of residual soils of the continually wet Highlands of Papua New Guinea. Géotechnique, 1974. 24(1): p. 101-106. [CrossRef] [Google Scholar]
  10. Coop, M. and J. Atkinson, The mechanics of cemented carbonate sands. Geotechnique, 1993. 43(1): p. 53-67. [CrossRef] [Google Scholar]
  11. Alvarado, G., M.R. Coop, and S. Willson, On the role of bond breakage due to unloading in the behaviour of weak sandstones. Géotechnique, 2012. 62(4): p. 303-316. [CrossRef] [Google Scholar]
  12. Marri, A., D. Wanatowski, and H. Yu, Drained behaviour of cemented sand in high pressure triaxial compression tests. Geomechanics and Geoengineering, 2012. 7(3): p. 159-174. [CrossRef] [Google Scholar]
  13. Lorenzo, G.A. and D.T. Bergado, Fundamental parameters of cement-admixed clay-New approach. Journal of geotechnical and geoenvironmental engineering, 2004. 130(10): p. 1042-1050. [CrossRef] [Google Scholar]
  14. Terzaghi, K., R.B. Peck, and G. Mesri, Soil mechanics in engineering practice. 1996: John Wiley & Sons. [Google Scholar]
  15. Been, K., M. Jefferies, and J. Hachey, Critical state of sands. Geotechnique, 1991. 41(3): p. 365-381. [CrossRef] [Google Scholar]
  16. Pestana, J.M. and A. Whittle, Compression model for cohesionless soils. Géotechnique, 1995. 45(4): p. 611-631. [CrossRef] [Google Scholar]
  17. Jefferies, M. and K. Been, Implications for critical state theory from isotropic compression of sand. Géotechnique, 2000. 50(4): p. 419-429. [CrossRef] [Google Scholar]
  18. Lade, P.V., C. Liggio, and J.A. Yamamuro, Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotechnical testing journal, 1998. 21: p. 336-347. [CrossRef] [Google Scholar]
  19. Cubrinovski, M. and K. Ishihara, Maximum and minimum void ratio characteristics of sands. Soils and foundations, 2002. 42(6): p. 65-78. [CrossRef] [Google Scholar]
  20. Chuhan, F.A., et al., Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins. Canadian Geotechnical Journal, 2003. 40(5): p. 995-1011. [CrossRef] [Google Scholar]
  21. Nakata, Y., et al., Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils and foundations, 2001. 41(1): p. 69-82. [CrossRef] [Google Scholar]
  22. Hardin, B.O., 1-D strain in normally consolidated cohesionless soils. Journal of Geotechnical Engineering, 1987. 113(12): p. 1449-1467. [CrossRef] [Google Scholar]
  23. Meidani, M., C.S. Chang, and Y. Deng, On active and inactive voids and a compression model for granular soils. Engineering Geology, 2017. 222: p. 156-167. [Google Scholar]
  24. Mesri, G. and B. Vardhanabhuti, Compression of granular materials. Canadian Geotechnical Journal, 2009. 46(4): p. 369-392. [CrossRef] [Google Scholar]
  25. Nakata, A., et al., A probabilistic approach to sand particle crushing in the triaxial test. Géotechnique, 1999. 49(5): p. 567-583. [CrossRef] [Google Scholar]
  26. Yet, N.S., Time-dependent behavior of piles in sand. 1998, National University of Singapore: Singapore. [Google Scholar]
  27. Marinos, P. and E. Hoek, Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bulletin of engineering geology and the environment, 2001. 60(2): p. 85-92. [CrossRef] [Google Scholar]
  28. Regenauer-Lieb, K., et al., New Generation of Hoek Cells. Geotechnical Testing Journal, 2018. 42(3). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.