Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 13009 | |
Number of page(s) | 6 | |
Section | Behaviour at Geotechnical Interfaces | |
DOI | https://doi.org/10.1051/e3sconf/20199213009 | |
Published online | 25 June 2019 |
Laboratory investigation of interface shearing in chalk
1
Tony Gee & Partners, London, UK
2
Oxford University, UK
3
Imperial College London, London, UK
* Corresponding author: lhdchan1@outlook.com
Chalk, a soft fine-grained Cretaceous limestone, is encountered across northern Europe where recent offshore windfarm, oil, gas and onshore developments have called for better foundation design methods, particularly for driven piles whose shaft capacities are controlled by an effective stress Coulomb interface failure criterion. Interface type and roughness is known to affect both interface friction angles, δ′ and the magnitude of dilation required for shaft failure to develop. Site-specific interface ring-shear tests are recommended for offshore pile design in sands and clays to account for driven pile shaft materials, roughnesses and shear displacements. However, few such tests have been reported for chalks and it is also unclear whether δ′ angle changes contribute to the striking axial capacity increases, or set-up, noted over time with piles driven in chalk. This paper describes an interface shear study on low-to-medium density chalk from the St. Nicholas-at-Wade research test site in Kent, UK, where extensive field driven pile studies have been conducted [1, 2]. Direct shear and Bishop ring shear apparatus were employed to investigate the influences of interface material and surface roughness, as well as ageing under constant normal effective stresses (σn'). It is shown that the high relative roughness of the interface compared to the chalk grain size results in the ultimate interface shearing angles falling close to the chalk-chalk shearing resistance angles. The δ′ angles also increased by up to 5° over 38 days of ageing.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.