Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 13009
Number of page(s) 6
Section Behaviour at Geotechnical Interfaces
DOI https://doi.org/10.1051/e3sconf/20199213009
Published online 25 June 2019
  1. R. M. Buckley, R. J. Jardine, S. Kontoe, D. Parker & F. C. Schroeder. Ageing and cyclic behaviour of axially loaded piles driven in chalk. Géotechnique, 68, No. 2, https://doi.org/10.1680/jgeot.17.P.012: 146-161 (2018) [CrossRef] [Google Scholar]
  2. R. M. Buckley, R. J. Jardine, S. Kontoe & B. M. Lehane (). Effective stress regime around a jacked steel pile during installation ageing and load testing in chalk. Can. Geotech. J. DOI: 10.1139/cgj-2017-0145, DOI: 10.1139/cgj-2017-0145 (2018) [Google Scholar]
  3. A. J. Bowden, T. W. Spink & R. N. Mortimore. The engineering description of chalk: its strength, hardness and density. Q. J. Eng. Geol. Hydrogeol., 35, No. 4: 355-361 (2002) [Google Scholar]
  4. P. Carotenuto, V. Meyer, P. J. Strøm, Z. Cabarkapa, H. St. John, & R. J. Jardine. Installation and axial capacity of the Sheringham Shoal offshore wind farm monopiles-a case history. Proc. BGA Conf. Engineering in chalk (under review) (2018) [Google Scholar]
  5. F. Ciavaglia, J. Carey & A. Diambra. Time-dependent uplift capacity of driven piles in low to medium density chalk. Géotechnique Letters, 7, No. March: 1-7 (2017) [CrossRef] [Google Scholar]
  6. L. J. Doughty, R. M. Buckley & R. J. Jardine. Investigating the effect of ageing on the behaviour of chalk putty. Engineering in Chalk, London, UK: 695-701 (2018) [Google Scholar]
  7. A. Muir Wood, B. Mackenzie, D. Burbury, M. Rattley, C. R. I. Clayton, M. Mygind, K. Wessel Andersen, C. Le Blanc Thilsted & M. Albjerg Liingaard. Design of large diameter monopiles in chalk at Westermost Rough offshore wind farm. Poc. 3rd Conf. Frontiers in Offshore Geotechnics, Oslo, Norway: 723-728 (2015) [CrossRef] [Google Scholar]
  8. A. de Raguenel (). Stabilite des ramblais crayeux de grande hauteur. La craie: Bull. Liason Labo. P. de. Ch., No. Special V: 165-169 (1973) [Google Scholar]
  9. L. Lake. Engineering Properties of Chalk with Special Reference to Foundation Design and Performance. PhD Thesis, University of Surrey, Surrey, UK (1975) [Google Scholar]
  10. C. R. I. Clayton. Some properties of remoulded chalk. Proc. 9th Intl. Conf. Soil Mech. Found Eng., Tokyo, Japan: 65-68 (1977) [Google Scholar]
  11. C. R. l. Clayton. Chalk as Fill. PhD Thesis, University of Surrey, Surrey, UK (1978) [Google Scholar]
  12. S. P. S. Bundy. Geotechnical properties of chalk putties. PhD Thesis, University of Portsmouth, Portsmouth, UK (2013) [Google Scholar]
  13. G. Bialowas, A. Diambra, & D. Nash. Small strain stiffness evolution of reconstituted medium density chalk. Proc. 1st IMEKO TC4 Intl. Workshop on Metrology for Geotechnics, Benevento, Italy: 162-167 (2016) [Google Scholar]
  14. J. G. Potyondy. Skin friction between various soils and construction materials. Géotechnique, 11, No. 4: 339-353 (1961) [CrossRef] [Google Scholar]
  15. A. Gaba, S. Hardy, L. Doughty, W. Powrie, & D. Selemetas. Guidance on embedded retaining wall design, CIRIA (2017) [Google Scholar]
  16. R. J. Jardine, F. C. Chow, R. Overy, & J. R. Standing. ICP design methods for driven piles in sands and clays, London: Thomas Telford (2005) [CrossRef] [Google Scholar]
  17. R. J. Jardine, R. M. Buckley, S. Kontoe, P. Barbosa, & F. C. Schroeder. Behaviour of piles driven in chalk. Engineering in Chalk. ICE Publishing: 33-51, (2018) [Google Scholar]
  18. T. M. H. Le, G. R. Eiksund & P. J. Strøm. Characterisation of Residual Shear Strength at the Sheringham Shoal Offshore Wind Farm. Proc. 33rd Intl. Conf. Ocean, Offshore and Arctic Eng., San Francisco, California: 1-9 (2014) [Google Scholar]
  19. A. Ziogos, M. Brown, A. Ivanovic, & N. Morgan. Chalk-steel interface testing for marine energy foundations. Proc. of the ICE Geotech. Eng, 170, No. 3: 285-298 (2017) [CrossRef] [Google Scholar]
  20. A. W. Bishop, G. Green, V. K. Garga, A. Andresen, & J. Brown. A new ring shear apparatus and its application to the measurement of residual strength. Géotechnique, 21, No. 4: 273-328 (1971) [CrossRef] [Google Scholar]
  21. R. J. Jardine, R. M. Buckley, B. Byrne, S. Kontoe, R. Macadam & K. Vinck. The ALPACA research project to improve driven pile design in Chalk. Proc. 17th European Conference on Soil Mechanics and Geotechnical Engineering, in preparation, Reykjavik, Iceland (2019) [Google Scholar]
  22. J. M. Hancock. The petrology of the Chalk. Proceedings of the Geologists’ Association, 86, No. 4: 499-535 (1975) [CrossRef] [Google Scholar]
  23. C. R. I. Clayton. The mechanical properties of the Chalk. Proc. Intl. Chalk Symposium, Brighton, UK: 213-233 (1990) [Google Scholar]
  24. D. L. H. Chan. Laboratory investigation of chalk-steel interface shearing. MSc Thesis, Imperial College, London, UK (2017) [Google Scholar]
  25. M. Uesugi and H. Kishida. Frictional resistance at yield between dry sand and mild steel. Soil and Foundations, 26, No. 4: 139-149 (1986) [Google Scholar]
  26. R. J. Jardine, B. M. Lehane & S. J. Everton. Friction coefficients for piles in sands and silts. In Offshore Site Investigation and Foundation Behaviour. (Ardus D. A., Clare D., Hill A., Hobbs R., Jardine R. J. and Squire J. M. (eds)) Society for Underwater Technology, Dordrecht, pp. 661-677 (1992) [Google Scholar]
  27. R. M. Buckley. The axial behaviour of displacement piles in chalk. PhD Thesis, Imperial College London, London, UK (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.