Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 15007 | |
Number of page(s) | 5 | |
Section | Constitutive Modelling | |
DOI | https://doi.org/10.1051/e3sconf/20199215007 | |
Published online | 25 June 2019 |
Modelling shear strength of compacted soils
Nanyang Technological University, School of Civil and Environmental Engineering, Singapore
* Corresponding author: cecleong@ntu.edu.sg
Compacted soils constitute most engineering projects such as earth dams, embankments, pavements, and engineered slopes because of their high shear strength and low compressibility. The shear strength of compacted soils is a key soil parameter in the design of earth structures but it is seldom determined correctly due to their unsaturated state. The shear strength of compacted soils can be better evaluated under the framework of unsaturated soil mechanics. Saturated and unsaturated tests were conducted on compacted specimens using conventional direct shear apparatus under constant water content condition. Tests were conducted at different water contents and net normal stresses. The main objective of this study is to develop a shear strength model for compacted soils. Initial matric suction was measured before the test using the filter paper method. The two-stress state variables together with the extended Mohr-Coulomb failure criterion for unsaturated soils were used to obtain a lower bound model of the shear strength. The model was demonstrated using published data.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.