Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 16001 | |
Number of page(s) | 6 | |
Section | Numerical Modelling: THCM Coupling, Localisation, Boundary Value Problems | |
DOI | https://doi.org/10.1051/e3sconf/20199216001 | |
Published online | 25 June 2019 |
Assessing the impact of vertical heat exchangers on the response of a retaining wall
Imperial College London, Department of Civil and Environmental Engineering, SW7 2AZ London
* Corresponding author: eleonora.sailer13@imperial.ac.uk
Shallow geothermal energy systems, e.g. borehole heat exchangers or thermo-active structures, provide sustainable space heating and cooling by exchanging heat with the ground. When installed within densely built urban environments, the thermo-hydro-mechanical (THM) interactions occurring due to changes in ground temperature, such as soil deformation and development of excess pore water pressures, may affect the mechanical behaviour of adjacent underground structures. This paper investigates the effects of vertical heat exchangers installed near a deep basement by performing fully coupled THM finite element analyses using the Imperial College Finite Element Program. Different heat exchanger configurations are considered and their influence on the response of the basement wall is assessed in two-dimensional plane strain analyses, where different methods of modelling the heat sources in this type of analysis are employed to evaluate their effect on the temperature field and the non-isothermal soil response.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.